MID AND LOWER CIBOLO CREEK WATERSHED CHARACTERISTICS AND WATER QUALITY

Lucas Gregory, Michael Schramm - TWRI

Watershed Waterbodies

- Mid-Lower Cibolo Creek
 (~92 miles)
- Martinez Creek (~26 miles)
- Salatrillo Creek (~11 miles)
- Clifton Branch (~8 miles)

Key Watershed Characteristics

- Area: 580 sq miles (371,200 ac)
- Estimated Population: 186,154

WWTPs, 18.715 MGD

Streamflow

Resources Institute

EXTENSION

Streamflow

WATER QUALITY

7

Water Quality Background

- Clean Water Act The primary federal law governing water pollution
- US EPA administers the Clean Water Act

 Individual states set water quality standards and monitor water bodies to ensure standards are met

• Waterbodies that do not meet standards are listed in the 303(d) list

Types of Pollutant Sources

- Point sources "end of pipe" discharge
 - Examples: Wastewater plant, industrial discharge
 - Regulated! Discharge permit required

- Non-point sources comes from many diffuse sources
 - Regulated: municipal separate storm sewer systems, certain industrial sites
 - Non-regulated: All other runoff sources

Water Quality Standards

- State establishes water quality standards based on designated uses:
 - E. coli standards relate to Contact Recreation Use

Use Level	E. coli concentration
Primary Contact Recreation	126 cfu/100mL
Secondary Contact 1	630 cfu/100mL
Secondary Contact 2	1030 cfu/100mL
Noncontact	2060 cfu/100mL

Bacteria

• What is it?

 Escherichia coli are bacteria commonly found in the environment, foods, and intestines of people and animals

• Why do we measure it?

 E. coli is used as an indicator of the presence of fecal matter from warm blooded critters and the potential for pathogen presence

How does it get in streams?

- Natural factors
 - Direct deposition from wildlife, runoff transporting wildlife manure to streams, bacteria re-suspended during high flows
- Human factors
 - Runoff transporting bacteria from pet waste, livestock manure, failing OSSF/septic systems, sanitary sewer overflows
 - Direct loading from permitted dischargers

Bacteria

Bacteria

* Currently not on the 303(d) list, limited data through 2012

Water Quality Standards

- State establishes water quality standards based on designated uses:
 - Dissolved oxygen standards relate to Aquatic Life Use

Aquatic Life Use Level	Dissolved Oxygen (Mean/Minimum)
Exceptional	6.0/4.0 mg/L
High	5.0/4.0 mg/L
Intermediate	4.0/3.0 mg/L
Limited	3.0/2.0 mg/L

1-

Dissolved Oxygen

• What is it?

 A measure of how much oxygen is dissolved in the water.

Why do we measure it?

 Organisms living in the stream depend on normal dissolved oxygen levels to survive

• How do Dissolved Oxygen concentrations degrade?

- Daily and seasonal changes due to temperature, sunlight, and vegetation
- Decreased turbulence and shallower water depth due to low flow
- Increased organic matter reaching waterbodies
- Removal of riparian habitat, increased stream temps

Dissolved Oxygen

Dissolved Oxygen

24-hour minimum dissolved oxygen

Dissolved oxygen (grab sample)

Water Quality Standards

- Currently, no numeric criteria for nutrients in streams
- Screening level for total phosphorus, orthophosphorus, ammonia, nitrate nitrogen, and chlorophyll-a as preliminary indication of possible concerns
- Concern identified when level exceed>20% of time

Parameter	Screening Level
Total Phosphorus	0.69 mg/L
Orthophosphorus	0.37 mg/L
Ammonia	0.33 mg/L
Nitrate	1.95 mg/L
Chlorophyll-a	14.10 μg/L

• https://www.tceq.texas.gov/assets/public/waterq uality/swqm/assess/14txir/2014_guidance.pdf

Nutrients • What is it?

- Plant food (Total Phosphorous and Nitrate)
- Why do we measure it?
 - Excessive nutrients can lead to plant/algae blooms
 - Decomposition of built up plant/algae matter can lead to decreased DO
- How does it get there?
 - Natural factors
 - Surface runoff, erosion, and springflows
 - Seasonal aquatic plant growth and die off
 - Human factors
 - Runoff carrying nutrients associated with fertilizers, manure, faulty OSSFs
 - Direct loadings from permitted dischargers

Nitrate

Total Phosphorous

Nitrate

Nutrients

Nutrients

Total Phosphorous

Summary of Water Quality Conditions

- Ongoing primary contact recreation impairment in Lower Cibolo & Clifton Branch due to *E. coli* bacteria
- Concern in Martinez Creek due to E. coli bacteria
- Dissolved Oxygen impairment in Clifton Branch, improving DO in Mid Cibolo Creek
- Nutrient concerns based on TCEQ screening levels in the Mid Cibolo, portion of Lower Cibolo, Martinez Creek, and Salatrillo Creek

EXTRA SLIDES

Current Impairments and Concerns

*from 2014 Texas Integrated Report on Surface Water Quality based on data from 2005-2012

Lower Cibolo Creek and Clifton Branch

Impairments

Parameter	Assessment Units
Bacteria	1902_01; 1902_02; 1902_03; 1902C_01
Dissolved Oxygen (Grab Minimum)	1902C_01

Concerns

Parameter	Assessment Unit
Dissolved Oxygen (Grab)	1902C_01
Nitrate	1902_04; 1902_05
Total Phosphorous	1902_05; 1902C_01

Current Impairments and Concerns

*from 2014 Texas Integrated Report of Surface Water Quality

based on data from 2005-2012

Mid Cibolo Creek

Concerns

Parameter	Assessment Unit
Nitrate	1913_01; 1913_02
Total Phosphorous	1913_01; 1913_02

Category 4b

Parameter	Assessment Unit
DO (24-hr	1913_02
Minimum)	

Current Impairments and Concerns

*from 2014 Texas Integrated Report of Surface Water Quality based on data from 2005-2012

Martinez and Salatrillo Creeks

Concerns

Parameter	Assessment Unit
Bacteria	1902A_01*; 1902A_03*; 1902A_04*
Nitrate	1902A_03*;1902A_04*; 1902B_01
Total Phosphoro us	1902A_01; 1902A_03*; 1902A_04*; 1902B_01

